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We have investigated the underlying assumptions in estimating
cross-correlation rates between chemical shift anisotropy (CSA)
and dipolar coupling mechanisms in a scalar-coupled two-spin 1S
system, from laboratory frame relaxation experiments. It has been
shown that for an arbitrary relaxation delay, the difference in
relaxation rates of the individual components of an in-phase (or
antiphase) doublet is not related to the CSA-dipolar coupling
cross-correlation rate in a simple way. This is especially true in the
case where the difference in the decay rates of the in-phase and
antiphase terms of the density matrix becomes comparable to the
magnitude of the scalar coupling between the two spins. Improved
means of extracting cross-correlation rates in these cases are
presented. © 1998 Academic Press

Key Words: relaxation; cross-correlation; chemical shift anisot-
ropy; dipolar coupling; laboratory frame relaxation rates.

INTRODUCTION

applied to estimate the cross-correlation rates between C!
and dipolar coupling rely on measuring the rate of buildup ¢
antiphase magnetization from in-phase magnetization (or vi
versa) associated with a doublet in the laboratory fraPa&)(
Usually, several assumptions are made to simplify the dynal
ics of the spin system, allowing extraction of cross-correlatic
rates from such experiments. The intent of this paper is
explicitly state and examine the validity of these assumptiol
and propose more accurate means of extracting cross-corr
tion rates.

THEORY

Most laboratory frame experiments to measure cross-cor
lation between CSA and dipolar coupling rely on the fact th:
if one starts with a density operator given Qy at the begin-
ning of a relaxation periodz differential relaxation of the two
ines of the doublet, represented %(yy = 21,S), will cause

, . . . li
Cross-correlation between chemical shift anisotropy (CS%S]buildup of 4,S, at the end of the period. The ratio of the

and dipolar coupling can cause differential line bro_adgning @(pectation values of thel S, and thel, components of the
a scalar-coupled IS spin systeft).(An accurate guantitation of density matrix may then be used to es)t/imate the cross-corre

this phenomenon, in a case where the dipolar mteractl_onti|8n rate. To obtain insight into the behavior of the variou

knorvn in solution, offers a} miasurg of.the ?ShA gfsi glVe@omponents of the density matrix during the course of such .
nucleus (or, more accurately, the projection of the on t,'%‘?(periment, let us consider the spin dynamics during the pul

internuclear vect.qr involved in th? dlpqlar interaction). Thi equence element depicted in Fig. 1. The initial density matt
fact has beqn ultéllzed by sgverftl |nvest|gatorsl?:[o measure {1 ) is given byl,. The time evolution of the density matrix is
CSA.Of amide N .(2)' amide "H (3.’4)' and C,, (5) in iven by the solution to the Liouville—von Neumann equatio
proteins. The magnitude of the CSA in the latter two cases 8), in the following way:

been shown to be correlated with secondary structure and the ™’ '

hydrogen bonding environment of the nucleus in question.
Thus, a measure of the CSA of a given nucleus provides a

powerful tool to probe local structural effects in biomolecule _ I . . .
This interference effect has also been used to study |oi-§rrea(0) s the initial density matrix andk(t), that after time

anisotropic motion involving nuclei of the peptide backbonk thhe denS||ty ”_‘at”x maty be_wEFten %S alinear comrt])_m:t_mn(
(6). It is thus imperative that an accurate quantification of th% onormal spin operators in Liouville spack §), which in

o(t) = exp(—Lt)o(0). [1]

phenomenon be obtained. Most of the experiments commonly ¢35€ of a scalar coupled two-spsisystem Is 16-dimen-
sional. In our case we may restrict our attention to that part

§ o _ o the Liouville space spanned by the operatbys21,S,, |,
Present address:' Unlvers.mka Lausanne, Section de Chimie, BCH, CH2| S,. In this reduced space, the Liouvillian supermatrix=
1015, Lausanne-Dorigny, Switzerland. Y . .
2To whom all correspondence should be addressed at Complex Carbohy -%_ +I‘_’ during the T_ peI’IOdS (wherejt and T a_re the
drate Research Center, University of Georgia, 220 Riverbend Road, Atheh@Miltonian and relaxation superoperators, respectively), m
GA 30602-4712. be approximated by
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T C= |(2m))* - (AR)% [4]
o(0)=Ty
1 l In the limit where 2rJ > AR, we haveC =~ 277J andAR/C ~
AR/27wJ < 1. Neglecting terms higher than first-order in
AR/C, we may rewrite [3] as
T T AR
S o(27) =1, 1+ 5_sin(2mJn) |exp(—Ry27). 5]

FIG. 1. The basic pulse sequence element used in most laboratory frame
experiments to measure interference effects in relaxation due to cross-corre-
lation between CSA and dipolar coupling. Another approximate approach to obtaining an expressi

for the density matrix at the end of the Reriod is to average
the relaxation superoperatbr over the various terms of the

R @«J O ) density operator weighted by the time spent as each of t
-mJ R 7m 0 terms, in analogy to average Hamiltonian theofy0-{12.
L= 0 n R -—-mJ (21 Thus, thel, term observable at the end of the#riod may be
n 0 m R, assumed to relax monoexponentially with an average rels

ation rateR;, which is a weighted average & andR, with

Here,R andR, are the relaxation rates of the in-phase anrglatlve weights of cdmJr) and sirf(mJr). Integrating this

antiphase components, respectivelyis the coupling con- Gver the 2 period, we havels)

stant, andn is the relaxation contribution from the cross- )

correlation between the CSA of spinand thelS dipolar R—R. — |:S|n(21TJT):|AR. 6]
coupling. In this approximation, we have neglected the b AmT

effects of chemical shift evolution during the tw@eriods.

However, if we choose to observe the system only after tAdus, neglecting the small off-diagonal terms, the densi
period 2r, the chemical shift evolution would have beemmatrix may be written as

refocused by ther pulse. Moreover, chemical shift evolu-

tion during ther periods interconverts the termgandl, a(21) = I exp(—Ri27). [7]
(21, S, and 2,S), which relax equivalently. Hence, [2] is
adequate for our purposes. In the limit where 2rJ > AR, expanding [7] in a power series

It is possible to obtain exact analytical solutions for thgnd neglecting terms higher than first-order, we have
density matrix at the end of ther2eriod, but this is very

algebraically tedious, so we will make a few approximations AR

and investigate the validity of these approximations. Let us o2m)=1,[1+ ﬁSiﬂ(ZWJ’T) exp(—R,27), [8]
consider the limit wherep is much smaller than botR; and

R,, which is often true. In this case, we may set 0 in [2], L . . . . .
allowing us to focus on that part of the Liouville space that Which is identical to the expression derived in the previot
spanned by the operators and 2,S,. This two-dimensional paragraph, i.e., [5]. _ _
subspace s, in the absence of cross-correlation effects, “de?Ve Will now reintroduce cross-correlation effects while
coupled” from that part of Liouville space spanned by the working in the 2rJ > AR limit of the average Liouvillian

and 2, terms. The expression for the density matrix at th@rMula, presented in the previous paragraph. We further &
end of the 2 period may be expressed @ ( sume that ZJ > n); this allows us to work in the Liouville

subspace of dimension 2 spanned by the opergyamsd 2,S,
(or, equivalently, 2.S, andl,). The Liouvillian in this case is

o(27) given by
0 2mJ\* AR /AR c -
=W\c) ¢ g oodCn —sinCn) =[N a 9]
n Ri
« R ol AR27]
eXp(~Ra27) = C C where theR; is the average in-phase relaxation rate given k
% [1 — cogCr)Jexp—R,27), [3] [6] and R}, is the average antiphase relaxation rate given by
sin(2mJT)
1 o R.=Ry,+ | ———|AR [10]
whereR,, = (R, + R,), AR = R, — R, andC is given by 4wt
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Diagonalizing the Liouvillian of [9], we obtain the eigenvaluephase term. The decay rate of the antiphase term may, in t
case, be represented as the sum of the in-phase decay rate

1 [sin(2md7) 2 the selective proton longitudinal decay ratEs) There is
> \/[277JT AR] + (2m)2 [11] another situation where [14] would hold; this is when 2

AR. However, this is not usually realizable in real systems.
should be stated here that satisfying either of the two conc
tions just stated, i.e., [sinf2)7)/(27wJ7)]AR is very small or
‘:2% > 6R, is sufficient for [14] to hold. This is the case in the
situations considered in Ref2-6).

Although departures from [14] are to be expected when w
Spart from the limitAR < 2#J, inspection of [6], [10], and
[11] reveals that a simplification takes place at particular valu
of . When 2r=n/J, andn is an integerR; = R, = R,,, and
[11] transforms to

A =Ry, *

The eigenvectors of [9] are proportional to = %(Iy +
21,S,), which are the two components of the in-phase doubl
and . correspond to the relaxation rates|af. Thus, if one
starts with an initial density operator(0) = I, the expecta-
tion values of the relevant parts of the density operator, i.e., tg
expectation values df, and 2,S, at the end the 2period, are
given by

sin(27JT)
1 2wt A=Ry*m, [15]
<|y>(27) = E 1- ﬁ eX[i_/\_ZT)

: Substituting [15] into [12] and [13], we obtain exactly [14].
sin2wJ7) X Sy L
g This suggests that there may be some advantage in a judicit
plpqe ™ exp(— A, 27) [12] choice ofr values. The other limit where [14] holds true is
A=A whent > 1/J, i.e., when the relaxation delay is long enoug|
to allow many oscillations between in-phase and antipha
and terms, thus allowing the in-phase and antiphase components

the Liouville space to be sampled equally. In that case tl
n sin(2mJt)/(4mJ7) term in [6] and [10] is very small and can

2,9)@2r) = — A — A [exp(—A-27) — exp(—A.27)]. [13] pe neglected. As a result, we again h&®e= R, = R,
Operation in this limit may be somewhat impractical becaus

In most laboratory frame determinations of the cross-corr8l the loss of signal at very long
lation rates, two experiments are collected. In the first experi-
ment, the expectation valy@l,S,)(2r) is determined, and in
the second one, the expectation va{lg(27) is determined.

Z)r(]t?a::?t;)vz];u?ihexlﬁeCrtﬁt(l:cimlevatuhueei;uilcs; é??{lzf?oal[{é?iatg two-spin IS system. Simulations were performed using thre
NP Pe, levels of theory; the exact calculations using the numeric

T e eat o figgonalzatonof 2] hencelot eered 0 a5 method ),
. P ' average Liouvillian approach using the analytical expressio
as one approach in what follows.

A more common assumption is th&t can be given as in[12] a_nd [13] (referr_ed to as me_thod ), and finally the direc
follows (2): calculation of signal intensity using [14] (called method III).
' The numerical matrix manipulations were performed using tt
subroutines of the CLAPACK library1@), available from
_ (21,5)(27) — —tanH2 Netlib. All calculations were performed on a Silicon Graphic:
= = nT). [14] ;
(I (27) INDY (R4400) workstation.
Figures 2a—2c depict the ratio of the expectation values
It is evident from [12] and [13] that even at the approximatgl,S, and|, at the end of the 2period calculated using the
level of these equations, [14] holds only in the limit wheré¢hree different methods mentioned above. HeR,, andn
[sin(2md7)/(27wJT)]AR is very small, i.e., when the in-phasevalues used in the calculations were 6.0, 12.0, and 470 s
and antiphase terms do not have significantly different decegspectively. Thd values used were 3.0 Hz (2a), 6.0 Hz (2b)
rates, makingA\R ~ 0; or whenAR < 27J, or whenrt > 1/J. and 24.0 Hz (2c). It is seen from Fig. 2a that for small value
In an isolated two-spin system, the decay rates of the in-phage27J, when the limit 2rJ > AR is not satisfied, Il (dot-
and antiphase terms are equal in the slow-tumbling lidd).( dashed curve) produces a value for the ratio of the expectat
However, spins are seldom isolated ak@ is rarely close to values which is very different from that obtained from both th
zero. For example, if is an amide™N, and S is an amide exact calculation (I) (solid curve) and the average Liouvillia
proton (which has homonuclear interactions with several oth@pproach (II) (dotted curve). The latter two values seem
protons), the antiphase term decays much faster than the dagree quite well except for very large values of the relaxatic

SIMULATIONS AND DISCUSSION

We have simulated the effects of cross-correlation in
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FIG. 2. The value oi2l,S,)(27)/{I,)(27) as function of the relaxation delay7.2The values of the coupling constadf,used are 3.0 Hz (a), 6.0 Hz (b),
and 24.0 Hz (c). The solid line represents the curve calculated using method I, the dotted line is that calculated using method Il, and the dot-dashed line
calculated using lll. The 2values which correspond 1J (n = 1, 2, ...) have been indicated by circles.

period 2r, even though in this limit, the equivalence of [3] andehavior of the two terms can be understood by realizing th
[7] is no longer valid, and the average Liouvillian approximathe two terms constituting [12] and [13] have similar oscilla
tion (1) no longer holds. For larger values ofrd, the ratio as tory behavior. This is reinforced in [12] due to tHesign and
determined by the exact calculation (I) (solid curve) and the#duced in [13] due to the- sign.
determined using the average Liouvillian (II) (dotted curve) Figures 3a—3c depict the magnitude of the deviation of t
oscillate about the value obtained by using [14], the commondact value ofS from that calculated using the average Li-
applied approximation (lll) (dot-dashed curve). The crossimguvillian approach (solid curve) (II) and that calculated usin
of the two curves determined using methods | and 11l occurs[d#] (lll) (dotted curve). Represented are rms deviations as
27 values alternating between slightly greater and slightly lepgrcentage of the signal obtained using method I. The dev
than multiples of 1J. In the case of the average Liouvilletion can be quite large in the case where one deviates from f
approach (Il), the curves (Il and 1ll) cross at alues which 27J > AR limit for the calculation using [14] (lll), but this
are exact multiples of 3/ as expected from [12] and [13]. deviation decreases with an increase in&s shown by the
Inspection of [12] and [13] suggests the source of oscillatiaiotted curves in Fig. 3). The deviations in the average Liouvi
as coming principally from thel,)(27) term, whereas the lian case (Il) tend to be small at small values ofdd increase
(21,S,)(27) shows no significant oscillations. The oscillationsvith increasing 2 (solid curve in Fig. 3), but on an average
in (1,)(27) are oscillations of the spin-echo amplitude athey never reach the deviations displayed for method IIl.
shown by Meersmann and Bodenhaus@h The oscillatory Both curves undergo periodic zero crossings. In both cas



GHOSE AND PRESTEGARD

a 400 , °
30.0 |
£
k=
5]
3 200
a
®
10.0
0.0 . R . I
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
21 (seconds)
b 200 ° @ C s0 40v—4—ﬁ0—v—t—0—ﬁ—h—oj
VAN 40 A
’ N, \ -
15.0 / \ B ! ' ! \ 2
’ \ 1 [ [
’ \ [ [ [
! \ |‘ “ ,' ‘I :‘ ‘\ A I
' \ ' ' \ ]
\ 30 ¢t i [ [ 1 4
£ | £ A A
£ 100 - / \ i £ N D N A
S : ’ \ 2 v‘ ' ,’ Vo 1 ! H ! \ HY ! \
< / ' © i Vot Vo [ ' H v P [
& ; | X T T T T S T R S A .
’ \ ! H v [ v [ ! ' P i
1 \ P 1 Vot lI ) [ v ] ] 1 ' \ PERY ]
1 \ e ~. ] ] t [ 3 L 1] 1 ' 1 YRR 1
1 \ / N 1 ] (] ] V! [ [ \ P [l
1 1 i : 1 1 : 1 " [ 1 ‘I ] 1 1 ‘l
50 ¢ i o i i L Vi Voo
] 10+ L [ Vi I [} y ! vy [
! i A i vt V! (] v ! (] [
! 1 [ [N X V! (] o ! [ !
/ f H i 1 ' Vi V! 1 V!
/ T T S S N A
[ 1 Y W 4 W ' !
H y (] ! u ! [ q
] ] L
0.30 0.35

R 0.0 ‘
0.30 0.35 0.00 0.05 0.10 0.15 0.20 0.25

0 L \
0.00 0.05 0.10 0.15 0.20 0.25
27 (seconds)

21 (seconds)
FIG. 3. The root mean square deviation ,S,)(27)/(l,)(27) for the methods Il (solid curve) and Ill (dotted curve) from that obtained from the exa
calculation (1), as a percentage of the signal obtained from the exact calculation (1), plotted as a function of the relaxatioi tien& 2alues which correspond
ton/J (n =1, 2,...) have been indicated by circles.

zero crossings occur at times which are slightly larger th@omparable tAAR, the results produced by both the averag
multiples of 10 (after the last zero crossing) for odd-numbereHiouvillian approach (II) and [14] (lll) deviate from those
zero crossings, and slightly smaller than multiples of fior  predicted by the exact theory. However, the deviation in tt
even-numbered zero crossings, after the first one or two zéoomer case is generally smaller than the latter case; it
crossings. Initially, the curves calculated using the Liouvilliagignificantly smaller when the value of % small. It can thus
approach (1) (solid curve) tend to intersect with those calclbe said that the average Liouvillian approach produces bet
lated using the exact approach (I) at times which are slighthgreement with the exact calculation at shovilues. It must
longer than the times at which the curves calculated using [12@ stated here (as pointed out by one of the reviewers) that
(dotted curve) cross the exact curves, for odd-numbered intthre limit n > 27J, method Il is no longer a better description
sections. The situation is reversed for even-numbered intersetthe real situation than method Ill. However, cases where tf
tions, where the crossings of the curves generated using méithit holds are rare in real situations.

ods (I) and (Il) occur at times which are shorter than the Finally, we consider the effects of using [14] (the mos
corresponding crossing times of the curves produced usiogmmonly utilized method) to estimate the valuerpét two
methods (I1) and (I). At moderately large values of the zero different values ofl (6.0 and 24.0 Hz) at AR value of 6.0 5.
crossings converge to similar time points (see Fig. 3c). Thus)ite have generated relaxation curves using the exact theory
may be said that in the case where the magnitudemf 8 and then extracted the value gfusing [14]. The results are
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FIG. 4. Values ofn estimated using an inversion of [14] fdr= 6.0 Hz
(solid curve) and = 24.0 Hz (dashed curve). The correct valueya$ 4.0 s *.
The 2r which correspond te/J (n = 1, 2, ...) and (&0 + 1)/2J (m = O,
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ments that must be made with small coupling constants a
short relaxation periods {2 However, the more common
approach, which leads to a simple tanixdependence o,
can yield good results with a judicious choice afialues. The
effects of errors introduced by simplifying assumptions can t
largely avoided by choosing certain values of the relaxatic
delay 2requal to (In + 1)/2J (m = 0, 1, 2, ...) for two
successive values ofi (e.g., 2 = 1/2J and 2r = 3/2J). The
success of this method would rely on some preliminary know
edge of the values of the coupling constahtadditionally, if
some estimate of the various relaxation rates, kg, ,R;, and
7, are available, it would allow one to decide whether it woul
be sufficient to use [14] to obtain an accurate estimatg, @ir
whether a more sophisticated analysis would be required. V
have chosen the experiments @j @s an example of experi-
ments which rely on representing the decay rates of the lines
scalar-coupled doublets &, * m. The same arguments
could apply to other experiments which make similar assum
tions @).

1, 2, ...) are represented by circles and diamonds, respectively. Note that the

latter are distributed to the two sides of the true value,adt alternate points.

shown in Fig. 4. The correct value gf= 4.0 s *. Using [14]
to estimaten would yield erroneous results at values af 2
which are quite different from multiples of 1/ This is espe-
cially true when 2rJ values are comparable toR, as can be
seen from the solid curvel (= 6.0 Hz,AR = 6.0 s %) in Fig.

4. However, we see that making two sets of measurements ‘at

27 values of (In + 1)/2J (m = 0, 1, 2,...) at two
successive values ofi (this is where the deviation from the

correct value is the largest) and then averaging the two

values yields the correct value gfbecause of cancellation

of errors. This value is even more accurate than picking a

value of 2r which is a multiple of 14. As is evident from the
solid line in Fig. 4 § = 6.0 Hz), using the value of) at 2r
= 1/J and Z = 2/J yields values ofn which are 3.77 and
3.80. Taking the average between the valueg) @t 2r =
1/23(3.38) and 2 = 3/2J (4.60) gives a value of 3.99 which
is very close to the correct value of 4.0. WhenJ2> AR
(J = 24.0 Hz,AR = 6.0 s %, dashed line in Fig. 4), both

methods produce results which are similar and close to the

correct value ofy.

CONCLUSIONS

In conclusion, calculation of cross-correlation rate constants
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