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We have investigated the underlying assumptions in estimating
cross-correlation rates between chemical shift anisotropy (CSA)
and dipolar coupling mechanisms in a scalar-coupled two-spin IS
system, from laboratory frame relaxation experiments. It has been
shown that for an arbitrary relaxation delay, the difference in
relaxation rates of the individual components of an in-phase (or
antiphase) doublet is not related to the CSA–dipolar coupling
cross-correlation rate in a simple way. This is especially true in the
case where the difference in the decay rates of the in-phase and
antiphase terms of the density matrix becomes comparable to the
magnitude of the scalar coupling between the two spins. Improved
means of extracting cross-correlation rates in these cases are
presented. © 1998 Academic Press
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INTRODUCTION

Cross-correlation between chemical shift anisotropy (CSA)
and dipolar coupling can cause differential line broadening in
a scalar-coupled IS spin system (1). An accurate quantitation of
this phenomenon, in a case where the dipolar interaction is
known in solution, offers a measure of the CSA of a given
nucleus (or, more accurately, the projection of the CSA on the
internuclear vector involved in the dipolar interaction). This
fact has been utilized by several investigators to measure the
CSA of amide 15N (2), amide 1H (3, 4), and 13Ca (5) in
proteins. The magnitude of the CSA in the latter two cases has
been shown to be correlated with secondary structure and the
hydrogen bonding environment of the nucleus in question.
Thus, a measure of the CSA of a given nucleus provides a
powerful tool to probe local structural effects in biomolecules.
This interference effect has also been used to study local
anisotropic motion involving nuclei of the peptide backbone
(6). It is thus imperative that an accurate quantification of this
phenomenon be obtained. Most of the experiments commonly

applied to estimate the cross-correlation rates between CSA
and dipolar coupling rely on measuring the rate of buildup of
antiphase magnetization from in-phase magnetization (or vice
versa) associated with a doublet in the laboratory frame (2–5).
Usually, several assumptions are made to simplify the dynam-
ics of the spin system, allowing extraction of cross-correlation
rates from such experiments. The intent of this paper is to
explicitly state and examine the validity of these assumptions
and propose more accurate means of extracting cross-correla-
tion rates.

THEORY

Most laboratory frame experiments to measure cross-corre-
lation between CSA and dipolar coupling rely on the fact that
if one starts with a density operator given byI y, at the begin-
ning of a relaxation period 2t, differential relaxation of the two
lines of the doublet, represented by1

2
(I y 6 2I ySz), will cause

a buildup of 2I ySz at the end of the period. The ratio of the
expectation values of the 2I ySz and theI y components of the
density matrix may then be used to estimate the cross-correla-
tion rate. To obtain insight into the behavior of the various
components of the density matrix during the course of such an
experiment, let us consider the spin dynamics during the pulse
sequence element depicted in Fig. 1. The initial density matrix
s(0) is given byI y. The time evolution of the density matrix is
given by the solution to the Liouville–von Neumann equation
(7, 8), in the following way:

s~t! 5 exp~2Lt!s~0!. [1]

Heres(0) is the initial density matrix ands(t), that after time
t. The density matrix may be written as a linear combination of
orthonormal spin operators in Liouville space (7, 8), which in
the case of a scalar coupled two-spinIS system is 16-dimen-
sional. In our case we may restrict our attention to that part of
the Liouville space spanned by the operatorsI y, 2I xSz, I x,
2I ySz. In this reduced space, the Liouvillian supermatrixL 5
2i* 1G, during the t periods (where* and G are the
Hamiltonian and relaxation superoperators, respectively), may
be approximated by

1 Present address: Universite´ de Lausanne, Section de Chimie, BCH, CH
1015, Lausanne-Dorigny, Switzerland.

2 To whom all correspondence should be addressed at Complex Carbohy-
drate Research Center, University of Georgia, 220 Riverbend Road, Athens,
GA 30602-4712.

JOURNAL OF MAGNETIC RESONANCE134,308–314 (1998)
ARTICLE NO. MN981499

3081090-7807/98 $25.00
Copyright © 1998 by Academic Press
All rights of reproduction in any form reserved.



L 5 3
Ri pJ 0 h

2pJ Ra h 0
0 h Ri 2pJ
h 0 pJ Ra

4 [2]

Here,Ri andRa are the relaxation rates of the in-phase and
antiphase components, respectively,J is the coupling con-
stant, andh is the relaxation contribution from the cross-
correlation between the CSA of spinI and theIS dipolar
coupling. In this approximation, we have neglected the
effects of chemical shift evolution during the twot periods.
However, if we choose to observe the system only after the
period 2t, the chemical shift evolution would have been
refocused by thep pulse. Moreover, chemical shift evolu-
tion during thet periods interconverts the termsIx and Iy

(2IxSz and 2IySz), which relax equivalently. Hence, [2] is
adequate for our purposes.

It is possible to obtain exact analytical solutions for the
density matrix at the end of the 2t period, but this is very
algebraically tedious, so we will make a few approximations
and investigate the validity of these approximations. Let us
consider the limit whereh is much smaller than bothRi and
Ra, which is often true. In this case, we may seth 5 0 in [2],
allowing us to focus on that part of the Liouville space that is
spanned by the operatorsI y and 2I xSz. This two-dimensional
subspace is, in the absence of cross-correlation effects, “de-
coupled” from that part of Liouville space spanned by theI x

and 2I ySz terms. The expression for the density matrix at the
end of the 2t period may be expressed as (9)

s~2t!

5 I yFS2pJ

C D 2

2
DR

C SDR

C
cos~Ct! 2 sin~Ct!DG

3 exp~2Rav2t! 2 2I xSz

DR

C

2pJ

C

3 @1 2 cos~Ct!#exp~2Rav2t!, [3]

whereRav 5 1
2
(Ri 1 Ra), DR 5 Ra 2 Ri, andC is given by

C 5 Î~2pJ!2 2 ~DR!2. [4]

In the limit where 2pJ @ DR, we haveC ' 2pJ andDR/C '
DR/ 2pJ ! 1. Neglecting terms higher than first-order in
DR/C, we may rewrite [3] as

s~2t! 5 I yF1 1
DR

2pJ
sin~2pJt!Gexp~2Rav2t!. [5]

Another approximate approach to obtaining an expression
for the density matrix at the end of the 2t period is to average
the relaxation superoperatorG over the various terms of the
density operator weighted by the time spent as each of the
terms, in analogy to average Hamiltonian theory (10–12).
Thus, theI y term observable at the end of the 2t period may be
assumed to relax monoexponentially with an average relax-
ation rateR9i, which is a weighted average ofRi andRa with
relative weights of cos2(pJt) and sin2(pJt). Integrating this
over the 2t period, we have (13)

R9i 5 Rav 2 Fsin~2pJt!

4pJt GDR. [6]

Thus, neglecting the small off-diagonal terms, the density
matrix may be written as

s~2t! 5 I yexp~2R9i2t!. [7]

In the limit where 2pJ @ DR, expanding [7] in a power series
and neglecting terms higher than first-order, we have

s~2t! 5 I yF1 1
DR

2pJ
sin~2pJt!Gexp~2Rav2t!, [8]

which is identical to the expression derived in the previous
paragraph, i.e., [5].

We will now reintroduce cross-correlation effects while
working in the 2pJ @ DR limit of the average Liouvillian
formula, presented in the previous paragraph. We further as-
sume that 2pJ @ h; this allows us to work in the Liouville
subspace of dimension 2 spanned by the operatorsI y and 2I ySz

(or, equivalently, 2I xSz andI x). The Liouvillian in this case is
given by

L 5 F R9i h
h R9a

G , [9]

where theR9i is the average in-phase relaxation rate given by
[6] and R9a is the average antiphase relaxation rate given by

R9a 5 Rav 1 Fsin~2pJt!

4pJt GDR. [10]

FIG. 1. The basic pulse sequence element used in most laboratory frame
experiments to measure interference effects in relaxation due to cross-corre-
lation between CSA and dipolar coupling.
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Diagonalizing the Liouvillian of [9], we obtain the eigenvalues

l6 5 Rav 6
1

2 ÎFsin~2pJt!

2pJt
DRG 2

1 ~2h!2. [11]

The eigenvectors of [9] are proportional toI6 5 1
2
(I y 6

2I ySz), which are the two components of the in-phase doublet,
andl6 correspond to the relaxation rates ofI6. Thus, if one
starts with an initial density operators(0) 5 I y, the expecta-
tion values of the relevant parts of the density operator, i.e., the
expectation values ofI y and 2I ySz at the end the 2t period, are
given by

^I y&~2t! 5
1

2
31 2 1

sin~2pJt!

2pJt
DR

l1 2 l2
2exp~2l22t!

1 11 1

sin~2pJt!

2pJt
DR

l1 2 l2
2exp~2l12t!4 [12]

and

^2IySz&~2t! 5 2
h

l1 2 l2
@exp~2l22t! 2 exp~2l12t!#. [13]

In most laboratory frame determinations of the cross-corre-
lation rates, two experiments are collected. In the first experi-
ment, the expectation value^2I ySz&(2t) is determined, and in
the second one, the expectation value^I y&(2t) is determined.
The ratio of the expectation values,S, is then analyzed to
extract a value ofh. In principle, the ratio of [12] to [13] can
be plotted for various values ofDR and h and fit to experi-
mental data to extract the relevant parameters. We will use this
as one approach in what follows.

A more common assumption is thatS can be given as
follows (2):

S5
^2I ySz&~2t!

^I y&~2t!
5 2tanh~2ht!. [14]

It is evident from [12] and [13] that even at the approximate
level of these equations, [14] holds only in the limit where
[sin(2pJt)/(2pJt)]DR is very small, i.e., when the in-phase
and antiphase terms do not have significantly different decay
rates, makingDR ' 0; or whenDR ! 2pJ, or whent @ 1/J.
In an isolated two-spin system, the decay rates of the in-phase
and antiphase terms are equal in the slow-tumbling limit (14).
However, spins are seldom isolated andDR is rarely close to
zero. For example, ifI is an amide15N, and S is an amide
proton (which has homonuclear interactions with several other
protons), the antiphase term decays much faster than the in-

phase term. The decay rate of the antiphase term may, in this
case, be represented as the sum of the in-phase decay rate and
the selective proton longitudinal decay rate (15). There is
another situation where [14] would hold; this is when 2h @
DR. However, this is not usually realizable in real systems. It
should be stated here that satisfying either of the two condi-
tions just stated, i.e., [sin(2pJt)/(2pJt)]DR is very small or
2h @ dR, is sufficient for [14] to hold. This is the case in the
situations considered in Refs. (2–6).

Although departures from [14] are to be expected when we
depart from the limitDR ! 2pJ, inspection of [6], [10], and
[11] reveals that a simplification takes place at particular values
of t. When 2t5n/J, andn is an integer,R9i 5 R9a 5 Rav, and
[11] transforms to

l6 5 Rav 6 h, [15]

Substituting [15] into [12] and [13], we obtain exactly [14].
This suggests that there may be some advantage in a judicious
choice oft values. The other limit where [14] holds true is
whent @ 1/J, i.e., when the relaxation delay is long enough
to allow many oscillations between in-phase and antiphase
terms, thus allowing the in-phase and antiphase components of
the Liouville space to be sampled equally. In that case the
sin(2pJt)/(4pJt) term in [6] and [10] is very small and can
be neglected. As a result, we again haveR9i 5 R9a 5 Rav.
Operation in this limit may be somewhat impractical because
of the loss of signal at very longt.

SIMULATIONS AND DISCUSSION

We have simulated the effects of cross-correlation in a
two-spin IS system. Simulations were performed using three
levels of theory; the exact calculations using the numerical
diagonalization of [2] (henceforth referred to as method I), the
average Liouvillian approach using the analytical expressions
in [12] and [13] (referred to as method II), and finally the direct
calculation of signal intensity using [14] (called method III).
The numerical matrix manipulations were performed using the
subroutines of the CLAPACK library (16), available from
Netlib. All calculations were performed on a Silicon Graphics
INDY (R4400) workstation.

Figures 2a–2c depict the ratio of the expectation values of
2I ySz and I y at the end of the 2t period calculated using the
three different methods mentioned above. TheRi, Ra, andh
values used in the calculations were 6.0, 12.0, and 4.0 s21,
respectively. TheJ values used were 3.0 Hz (2a), 6.0 Hz (2b),
and 24.0 Hz (2c). It is seen from Fig. 2a that for small values
of 2pJ, when the limit 2pJ @ DR is not satisfied, III (dot-
dashed curve) produces a value for the ratio of the expectation
values which is very different from that obtained from both the
exact calculation (I) (solid curve) and the average Liouvillian
approach (II) (dotted curve). The latter two values seem to
agree quite well except for very large values of the relaxation
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period 2t, even though in this limit, the equivalence of [3] and
[7] is no longer valid, and the average Liouvillian approxima-
tion (II) no longer holds. For larger values of 2pJ, the ratio as
determined by the exact calculation (I) (solid curve) and that
determined using the average Liouvillian (II) (dotted curve)
oscillate about the value obtained by using [14], the commonly
applied approximation (III) (dot-dashed curve). The crossing
of the two curves determined using methods I and III occurs at
2t values alternating between slightly greater and slightly less
than multiples of 1/J. In the case of the average Liouville
approach (II), the curves (II and III) cross at 2t values which
are exact multiples of 1/J, as expected from [12] and [13].

Inspection of [12] and [13] suggests the source of oscillation
as coming principally from thê I y&(2t) term, whereas the
^2I ySz&(2t) shows no significant oscillations. The oscillations
in ^I y&(2t) are oscillations of the spin-echo amplitude as
shown by Meersmann and Bodenhausen (9). The oscillatory

behavior of the two terms can be understood by realizing that
the two terms constituting [12] and [13] have similar oscilla-
tory behavior. This is reinforced in [12] due to the1 sign and
reduced in [13] due to the2 sign.

Figures 3a–3c depict the magnitude of the deviation of the
exact value ofS from that calculated using the average Li-
ouvillian approach (solid curve) (II) and that calculated using
[14] (III) (dotted curve). Represented are rms deviations as a
percentage of the signal obtained using method I. The devia-
tion can be quite large in the case where one deviates from the
2pJ @ DR limit for the calculation using [14] (III), but this
deviation decreases with an increase in 2t as shown by the
dotted curves in Fig. 3). The deviations in the average Liouvil-
lian case (II) tend to be small at small values of 2t and increase
with increasing 2t (solid curve in Fig. 3), but on an average
they never reach the deviations displayed for method III.

Both curves undergo periodic zero crossings. In both cases

FIG. 2. The value of̂ 2I ySz&(2t)/^I y&(2t) as function of the relaxation delay, 2t. The values of the coupling constant,J, used are 3.0 Hz (a), 6.0 Hz (b),
and 24.0 Hz (c). The solid line represents the curve calculated using method I, the dotted line is that calculated using method II, and the dot-dashed line has been
calculated using III. The 2t values which correspond ton/J (n 5 1, 2, . . . ) have been indicated by circles.
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zero crossings occur at times which are slightly larger than
multiples of 1/J (after the last zero crossing) for odd-numbered
zero crossings, and slightly smaller than multiples of 1/J for
even-numbered zero crossings, after the first one or two zero
crossings. Initially, the curves calculated using the Liouvillian
approach (II) (solid curve) tend to intersect with those calcu-
lated using the exact approach (I) at times which are slightly
longer than the times at which the curves calculated using [14]
(dotted curve) cross the exact curves, for odd-numbered inter-
sections. The situation is reversed for even-numbered intersec-
tions, where the crossings of the curves generated using meth-
ods (I) and (II) occur at times which are shorter than the
corresponding crossing times of the curves produced using
methods (III) and (I). At moderately large values of 2t, the zero
crossings converge to similar time points (see Fig. 3c). Thus, it
may be said that in the case where the magnitude of 2pJ is

comparable toDR, the results produced by both the average
Liouvillian approach (II) and [14] (III) deviate from those
predicted by the exact theory. However, the deviation in the
former case is generally smaller than the latter case; it is
significantly smaller when the value of 2t is small. It can thus
be said that the average Liouvillian approach produces better
agreement with the exact calculation at shortt values. It must
be stated here (as pointed out by one of the reviewers) that in
the limit h @ 2pJ, method II is no longer a better description
of the real situation than method III. However, cases where this
limit holds are rare in real situations.

Finally, we consider the effects of using [14] (the most
commonly utilized method) to estimate the value ofh at two
different values ofJ (6.0 and 24.0 Hz) at aDR value of 6.0 s21.
We have generated relaxation curves using the exact theory (I),
and then extracted the value ofh using [14]. The results are

FIG. 3. The root mean square deviation of^2I ySz&(2t)/^I y&(2t) for the methods II (solid curve) and III (dotted curve) from that obtained from the exact
calculation (I), as a percentage of the signal obtained from the exact calculation (I), plotted as a function of the relaxation time 2t. The 2t values which correspond
to n/J (n 5 1, 2, . . . ) have been indicated by circles.
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shown in Fig. 4. The correct value ofh 5 4.0 s21. Using [14]
to estimateh would yield erroneous results at values of 2t
which are quite different from multiples of 1/J. This is espe-
cially true when 2pJ values are comparable toDR, as can be
seen from the solid curve (J 5 6.0 Hz,DR 5 6.0 s21) in Fig.
4. However, we see that making two sets of measurements at
2t values of (2m 1 1)/ 2J (m 5 0, 1, 2, . . . ) at two
successive values ofm (this is where the deviation from the
correct value is the largest) and then averaging the two
values yields the correct value ofh because of cancellation
of errors. This value is even more accurate than picking a
value of 2t which is a multiple of 1/J. As is evident from the
solid line in Fig. 4 (J 5 6.0 Hz), using the value ofh at 2t
5 1/J and 2t 5 2/J yields values ofh which are 3.77 and
3.80. Taking the average between the values ofh at 2t 5
1/2J (3.38) and 2t 5 3/2J (4.60) gives a value of 3.99 which
is very close to the correct value of 4.0. When 2pJ @ DR
(J 5 24.0 Hz, DR 5 6.0 s21, dashed line in Fig. 4), both
methods produce results which are similar and close to the
correct value ofh.

CONCLUSIONS

In conclusion, calculation of cross-correlation rate constants
(h) between CSA and dipolar coupling in two-spin systems can
be pursued by making simplifying assumptions about spin-
relaxation contributions and deriving expressions for the time
course of the ratio of the expectation values of the in-phase and
antiphase components of the signal. An average relaxation
approach provides a modest improvement over the most com-
monly employed set of assumptions, especially for measure-

ments that must be made with small coupling constants and
short relaxation periods (2t). However, the more common
approach, which leads to a simple tanh(2ht) dependence onh,
can yield good results with a judicious choice of 2t values. The
effects of errors introduced by simplifying assumptions can be
largely avoided by choosing certain values of the relaxation
delay 2t equal to (2m 1 1)/ 2J (m 5 0, 1, 2, . . . ) for two
successive values ofm (e.g., 2t 5 1/ 2J and 2t 5 3/ 2J). The
success of this method would rely on some preliminary knowl-
edge of the values of the coupling constantsJ. Additionally, if
some estimate of the various relaxation rates, i.e.,Ra, Ri, and
h, are available, it would allow one to decide whether it would
be sufficient to use [14] to obtain an accurate estimate ofh, or
whether a more sophisticated analysis would be required. We
have chosen the experiments of (2) as an example of experi-
ments which rely on representing the decay rates of the lines of
scalar-coupled doublets asRav 6 h. The same arguments
could apply to other experiments which make similar assump-
tions (4).
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